

Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, Volume 21, No. 1, ISSN 1726-9679

ISBN 978-3-901509-73-5, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2010

Make Harmony Between Technology and Nature, and Your Mind will Fly Free as a Bird

Annals of DAAAM International

IMPORT/ EXPORT OF GIS DATA IN ORACLE SPATIAL

BOICEA, A[lexandru]; BENTU, A[lexandru] S[tefan]; RADULESCU, F[lorin] & STOEAN, N[adia] G[abriela]

Abstract: This paper presents raster and vector GIS files and
the Oracle Spatial database object. The application is made in
Java and this paper presents the algorithms for the import,
export of raster/vector GIS files and also the conversion of
raster to vector and vector to raster data.
Key words: Oracle Spatial, database, GIS, raster, vector

1. INTRODUCTION

This paper address several theoretical and practical aspects of
software development aimed at the import and the export of
GIS databases in Oracle Spatial. To form the Oracle Spatial
database we will use GIS raster files (ESRI, BIL) or GIS vector
files (GML, Shapefile). The application connects to the
database or GIS files to extract or enter geograic data and for
these it uses different algorithms for import and export of
geographic data and heuristic algorithms for the conversion
between raster and vector data. The user is able to choose
exactly how the data will be converted.

Nowadays, on the market there are few applications that
assure only the import or export of GIS data into Oracle Spatial
database like: SQL Loader, GRASS, Spatial Console or
PalentGIS. None of these applications can assure conversion
between different data types (raster and vector).

The application can be improved by using multiple GIS files,
creating software modules for viewing maps and for editing
spatial data. In addition to that, the conversion alghoritms can
be optimized in order to make the operations faster.

2. TECHNOLOGIES

Raster files are generally used to store image information,
data captured by satellites or other airborne imaging systems. A
raster format is reprezented by any type of digital image stored
in grids. The raster data is divided into cells, pixels or elements.
Cells are organized in arrays and each one has a single value
that represents a geographic attribute for the area. The row and
column numbers are used to identify the location of each cell
within the array (George, 2001). The raster GIS files used for
the application are: BIL (binary format) and ESRI (ASCII
format)

Vector files are represented by vectorial elements: points,
lines, polygons, arcs, string lines etc. Each GIS file type has its
own way to represent the vectorial information, in one or more
files. The vector GIS files used for the application are:
ShapeFile (binary format) and GML (ASCII format).

Oracle Spatial provides an SQL schema and functions that
facilitate the storage, retrieval, update and query of spatial data.
Oracle Spatial supports the object-relational model for
representing geometries. The object that can store geometric
data is: MDSYS.SDO_GEOMETRY (Albert, 2007).

3. APPLICATION

This application makes the import and export from an Oracle
Spatial database to GIS data files. The application also makes
the raster/vector conversion for different GIS file types. To
store data in Oracle Spatial, we need two tables: in one we store

the metadata (MapInfo) for all the maps and in the others the
actual map (Chuck, 2003).

MapInfo

Name Variable Description

MAP_ID NUMBER(6) Map primary key

MAP_NAME VARCHAR2(15) Map name

MAP_TYPE NUMBER(1) Value 0 for a raster map
and 1 for a vector one

TABLE_NAME VARCHAR2(15) Table name which stores
the map. Unique value

XMIN NUMBER(10,4) Minimal latitude

XMAX NUMBER(10,4) Maximal latitude

YMIN NUMBER(10,4) Minimal longitude

YMAX NUMBER(10,4) Maximal longitude

ZMIN NUMBER(10,4) Minimal altitude

ZMAX NUMBER(10,4) Maximal altitude

DESCRIPTION VARCHAR2(50) Supplementary
information

Tab. 1. Metadata table for the maps

Raster Import:
1. The header from the raster file is read and analyzed
2. Metadata is inserted in MapInfo about the new map
3. Is created a new table where the map will be stored
(table_name)
4. Every cell are read from the raster cell and converted in
SDO_GEOMETRY objects
5. Data is inserted in the database

Raster Export:
1. The GIS file is created and the header is filled with metadata
2. Data is read from the table and is converted from
SDO_GEOMETRY objects into a single value (altitude)
3. Data is inserted in the file at the specific position in the
matrix

Vector Import:
1. The map is analyzed and metadata is inserted in MapInfo
2. Is created a new table where the map will be stored
3. Every vector is read from the GIS file and is converted in
SDO_GEOMETRY objects
4. Data is inserted in the database

Vector Export:
1. The GIS file is created
2. Data is read from the table and is converted from
SDO_GEOMETRY objects into a vector format specific to the
vector GIS file type
3. Data is inserted in the database.

Vector-Raster Conversion:
1. The vector GIS file or map stored the database is analyzed
2. Metadata is inserted in MapInfo about the new map
3. Is created a new table where the map will be stored
4. Repeat for every cell in the matrix map
 4.1. Select the vector data that intersects with the cell

4.2. Calculate the altitude value for the cell: weighted average
of the surfaces occupied by the vector data in the cell
4.3. Convert data into a SDO_GEOMETRY object
4.4. Data is inserted in the database

Vector-Raster Conversion:
1. The map is analyzed and metadata is inserted inMapInfo
2. The following algorithm is applied:

U[x][y] = 0 - cell is not being used; =1 - cell is being used

A Matrix that stores the altitude of the map cells

n Number of raster cells on latitude in the map

m Number of raster cells on longitude in the map

P List of cells with the same altitude

N List of neighbor cells with the same altitude

T Temporary value, T=(x,y)

F Polygon resulted from P

Tab. 2. Variables used in the main algorithm

main()
1. initialize A, U //U[x][y]={{0}}
2. repeat until sum(U[x][y]==n*m)

2.1. initialize P,N //P={}, N={}
2.2. select first x, y where U[x][y]=0
2.3. U[x][y]=1; P=P union {(x,y)};T=(x,y)
2.4. repeat

2.4.1. find all neighbors to T like (nx,ny) where
 A[nx][ny]=A[x][y] and U[nx][ny]=0
2.4.2. insert neighbors into N
2.4.3. s=0; P=P union {(nx,ny)} for all (nx,ny)
2.4.4. if N is not empty

 2.4.4.1. remove first (nx,ny) from N
2.4.4.2. s = 1;T = (nx,ny)

2.5. until s=0
2.6. F=create_poligon(P)
2.7. convert F to SDO_GEOMETRY
2.8. insert F into database

P List of cells that will form the polygon

E List of all edges created by the cells

V List of all vertices created by the cells

EU List of edges necessarily for the polygon creation

nv Number of neighbor vertices
(minimum 3, maximum 8)

nei Number of edges that include a point
(minimum 2, maximum 4)
The edges are numbered by their position

EI Edge list that include a point // EI[1..4]
EI[1]=null if edge in position 1 does not exists
EI[1]=edge1 if edge in position 1 does exists

nes Number of edges that surround a point
(minimum 3, maximum 8)
The edges are numbered by their position

ES Edge surround list // ES[1..8]
ES[1]=null if edge in position 1 does not exist
ES[1]=edge1 if edge in position 1 does exists

EUO List of ordered edges necessarily for the polygon creation
EUO[edge_nr][1..2] // 1, 2 are the vertices of the edge

FV List of vertices lists that forms the polygon

AV Temporarily vertices list // FV[x]=AV

FD List of directions for FV. FD[x] corresponds to list FV[x]
FD[x]=0 for the polygon surface that is included
FD[x]=1 for the polygon surface that is excluded

Tab. 3. Variables used in the create_poligon function

create_poligon(P)
1. initialize E,V //E={},V={}
2. for each cell in P

2.1. calculate the edges and vertices of the cell P[x][y]
2.2. insert in Eand V the edges and vertices that are unique

3. initialize EU //EU={}
4. for every point (x,y) in V

4.1. calculate nv,nei,nes for (x,y) from V
4.2. create ES,EI and initialize them //view Table x.x
4.3. if (nei==2) then

insert into EU at the end, edges where EI[x]!=null, 0<x<5
4.4. if (nei==3) then

4.4.1. if (EI[1]=null orEI[3]=null)
insert into EU at the end, edges EI[2], EI[4]

4.4.2. if (EI[2]=null orEI[4]=null)
insert into EU at the end, edges EI[1], EI[3]

4.5. if (nei==4) and ((nv=7) or (np=8 and nei!=8)) then
4.5.1. if(ES[1]=null or ES[8]=null) then

insert into EU at the end, edges EI[4], EI[1]
4.5.2. if(ES[2]=null or ES[3]=null) then

insert into EU at the end, edges EI[1], EI[2]
4.5.3. if(ES[4]=null or ES[5]=null) then
insert into EU at the end, edges EI[2], EI[3]
4.5.4. if(ES[6]=null or ES[7]=null) then
insert into EU at the end, edges EI[3], EI[4]

5. create EUO // EUO={}
6. repeat

6.1. p0=p1, extract first edge (p1,p2) from EU // p1=(x1,y1)
6.2. insert into EU at the end, edge (p1,p2)
6.3. repeat

6.3.1. extract edge (pa1,pa2) from EU where
pa1=EUO[last_element][2] or pas2=EUO[last_element][1]
6.3.2. if (pa1=EUO[last_element][2]) then
insert into EU at the end, edge (pa1,pa2)
6.3.3. if (pa2=EUO[last_element][1]) then
insert into EU at the end, edge (pa2,pa1)

6.4. until p0=EUO[last_element][2]
7. until MP is empty
8. for every e1=EUO[t] e2=EUO[t+1] //ei=((xi1,yi1),(xi2,yi2))
where t=module(0..size(EUO), size(EUO))+1
 8.1. if (e1[2]=e2[1]) and

(e1[1][1]=e2[2][1] or e1[1][2]=e2[2][2]) then
8.1.1. remove from EUO: EUO[t+1], EUO[t]
8.1.2. insert into EUO on position t, edge (e1[1],e2[2])

9. i=0, create FV, FD // FV={{}}, FD={}
10. repeat
 10.1. i=i+1, create TV // TV={}
 10.2. extract first edge e=(p1,p2) from EUO //EUO[1]=e
 10.3. p0=p1

10.4. if(p1[1]=p2[1] and p1[2]<p2[2]) or
 (p1[2]=p2[2] and p1[1]>p2[1])
then FD[i]=0; else FD[i]=1

 10.5. insert into TV vertex p1 // TV[1]=p1
 10.6. repeat

10.6.1. extract first edge (p1,p2) from EUO
10.6.2. insert into TV at the end, vertex p1
10.6.3. if (p0=p2) then

10.6.3.1. insert into TV at the end, vertex p2
10.6.3.2. insert into FV at the end, list TV
 //FV[size(FV)+1] = TV

 10.7. until (p0=p2)
11. until EUO is empty
12. return (FV,FD)

4. CONCLUSIONS

This paper tried to emphasize the importance of software
that allows conversion between different types of spatial data
and assures import and export of GIS data in Oracle Spatial
Database. For the application were chosen all the different
types of GIS files: both raster and vector type and ASCII and
binary formats. The purpose of selecting these files was to
cover all types of spatial data conversions that may exist.
Nowadays there isn’t an application that facilitate all these
functionalitys (import, export, convert) and neither one that can
make a conversions between raster and vector formats.

5. REFERENCES

Albert, G.; Ravi, K. & Euro, B. (2007). Pro Oracle Spatial for

Oracle Database 11g, Apress, 978-1-59059-899-3, USA
Chuck, M. (2003). Oracle Spatial User’s Guide and Reference
George, B. &Korte, P. (2001). The GIS Book, Fifth Edition, Ed.

OnwordPress, 0-7668-2820-4, Canada
*** (2010) http://en.wikipedia.org/wiki/GIS_file_formats,
Accessed on: 2010-01-10
***(2001)http://oreilly.com/catalog/orsqlloader/chapter/ch01.ht

ml, Accessed on: 2010-01-12

