

Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, Volume 21, No. 1, ISSN 1726-9679

ISBN 978-3-901509-73-5, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2010

Make Harmony Between Technology and Nature, and Your Mind will Fly Free as a Bird

Annals of DAAAM International

PERFORMANCE EVALUATION AND TUNING IN AN ORACLE DBMS

BOICEA, A[lexandru]; CRIVAT, A[lexandru]; RADULESCU, F[lorin] & POPA, G[eorge]

Abstract: The current paper presents the main ways of
monitoring and tuning of an Oracle instance. The issues
discussed are : Requirements for tuning, description of oracle
objects and utilities used and methods for SQL, Shared Pool,
Buffer Cache and Redo Log Buffer optimization.
Key words: oracle, database, tuning, performance evaluation

1. INTRODUCTION

Before beginning Oracle specific tuning one should check
for bottlenecks on the operating system level. In particular,
determine if there is excessive paging to the swap file and
whether other applications are contending for system resources
(such as RAM, CPU and disks) with Oracle. The following
aspects should be taken into consideration:
Database Design : Many times it will not be possible to
participate at this level but when possible, being able to lay
down a good design initially will help prevent a lot of
performance nightmares from ever occurring.
Memory tunning : One must make sure the SGA is tuned
correctly. The SGA is composed of three parts: 1) the data
block buffer cache, 2) the redo log cache and 3) the shared
pool. All three need to be tuned properly for optimal
performance.
Disk I/O: One must make sure the tablespaces are laid out
correctly so that we don't have one type of tablespace adversely
affecting another. An example of this is putting a rollback
segment tablespace on the same disk as a data tablespace. Also
verify that the storage parameters are set optimally.
Internal Memory Structure Contention : Verify one internal
process isn't waiting upon another for long periods of time. This
is done by monitoring and adjusting latches correctly. (Troy
technologies USA, 2001)

2. PERFORMANCE EVALUATION OF THE
DATABASE

Information about the status of the database can be found in
trace files and system views.
Trace files are Oracle log files which give the status of Oracle
events. The main overall trace file which monitors the instance
is called the alert.log. It is located in the directory specified by
the BACKGROUND_DUMP_DEST initialization parameter.
Trace files (except for alert.log) usually end with a .trc
extension. User process trace files go in the directory specified
by the USER_DUMP_DEST initialization parameter.
The V$ views are dynamic performance views based on the X$
tables. X$ tables are internal tables which hold information
about the instance. Both are owned by SYS and populated at
instance startup. V$ views can be seen by anyone with the
"SELECT ANY TABLE" object privilege while X$ tables can
only be viewed by SYS. The views which show information
about processes waiting for resources are: V$SYSTEM_EVENT,
V$SESSION_EVENT and V$SESSION_WAIT.
V$SYSSTAT is the main view for system performance on the
instance level. It can also be used to monitor client-server traffic.
V$SESSION gives connection information for all user sessions.
Based on the system views there are a set of scripts integrated

in oracle that generate performance reports: ULTBSTAT.SQL
and UTLESTAT.SQL. There is also a set of GUI applications
that come with the Oracle Enterprise Edition version of Oracle
Enterprise Manager called the Oracle Performance Pack. These
programs help monitor and optimize database performance
(Oracle Expert - assists in configuring and tuning the database,
Lock Manager - monitors locks, Performance Manager -
monitors real time performance statistics and views them in
various ways, Tablespace Manager - monitors segment storage
in tablespaces. Also performs the defragment of tablespaces
(know as coalescing, TopSessions - like the Unix 'top'
command, allows the monitoring of the top resource intensive
user sessions, Oracle Trace – monitors the performance within
user applications). (Troy technologies USA, 2001)

3. SQL TUNING

There are two optimizers built into Oracle: Rules Based and
Cost Based. The Rules Based Optimizer (RBO) is a set of 15
rules Oracle uses to determine the fastest path of execution for
a given SQL statement. The Cost Based Optimizer (CBO)
determines all possible paths of execution and assigns a cost to
each one. It chooses what it finds to be the least expensive path.
ANALYZE must be run on all tables and indexes to generate
statistics in order to use the Cost Based Optimizer.
It is very important to update statistics on a regular basis to
provide meaningful data for the CBO to work with.
Performance can suffer tremendously by using outdated
statistics. The CBO goal can be set to either; 1) fastest overall
throughput for a SQL statement or, 2) fastest initial response
time for a SQL statement. The optimizer can be set at the
session level by issuing the command:
ALTER SESSION SET OPTIMIZER GOAL=optimizer mode
The EXPLAIN PLAN FOR sql statement can be used to see
how the optimizer is executing the statement. This puts the
execution plan in the PLAN_TABLE.
SQL Trace is used to gather user session statistics. It generates
a trace file in the USER_DUMP_DEST location. SQL Trace
can be turned on at the instance level by setting the
initialization parameter SQL_TRACE=TRUE. SQL Trace can
also be turned on for an individual session by issuing: ALTER
SESSION SET SQL_TRACE=TRUE. TKPROF is used to read
the output of a trace file created by SQL Trace. The
DMBS_APPLICATION_INFO package is created by the
DBMSUTIL.SQL. It allows the DBA to track resource usage
and performance data for PL/SQL procedures.
DBMSUTIL.SQL is called by the CATPROC.SQL script so it
should already exist in the database. (Kilpatrick et al., 2001)

4. TUNING THE SHARED POOL

The shared pool is composed of the library cache, row
cache and if MTS is used, the User Global Area (UGA). The
size of the shared pool is set by the initialization parameter
SHARED_POOL_SIZE (in bytes).

The library cache contains shared parse information for SQL

statements. This is the main area to monitor in the shared pool.

The initialization parameter SHARED_POOL_RESERVED_

SIZE specifies how much of the shared pool has to be set aside

for the reserved list. This is an area of the library cache to store

large objects in. Objects smaller that the value specified by the

initialization parameter SHARED_POOL_RESERVED_ MIN

_ALLOC will not be allowed on the reserved list.

The User Global Area (UGA)is an additional third area of the

shared pool when Oracle runs in Multithreaded Server (MTS)

mode. When running in MTS mode, user information stored in

the PGA in dedicated server mode is stored in the UGA instead.

Hence, the UGA needs to be taken into consideration for

overall sizing of the shared pool. Specifically one needs to

calculate the additional amount of memory required by the

shared server sessions and open cursors.

5. TUNING THE BUFFER CACHE

The size of the buffer cache is determined by:

DB_BLOCK_SIZE * DB_BLOCK_BUFFERS.

DB_BLOCK_SIZE cannot be changed without recreating the

database. The buffer cache contains the dirty buffer write

queue, which holds dirty block buffers (i.e., modified blocks)

until they can be written out to disk. A least recently used

(LRU) algorithm is used to decide which buffers to move out of

the buffer cache so that new buffers can be read in.

The size of the default buffer pool is not explicitly defined.

Instead it is equal to the size of the entire buffer cache (value of

DB_BLOCK_BUFFERS) minus the number of blocks

allocated to the keep buffer pool and/or the recycle buffer pool.

The buffer blocks for the keep and recycle buffer pools are

taken from the buffer cache. Likewise, their LRU latches are

taken from the latches allocated for the entire buffer cache as

specified by DB_BLOCK_LRU_LATCHES. Therefore, neither

the number of buffer blocks nor the number of LRU latches

allocated to the keep and recycle buffer pools can, taken

together, equal or exceed the values allocated to the buffer

cache as a whole. If we over-allocate either DB blocks or LRU

latches by accident, the database will not mount.

The CACHE hint (/*+ CACHE */) is used in the SQL

statements to ensure that the selected table will be cached. Also

the CACHE clause can be used when creating a table to make

sure it will always be cached. Only small, frequently used

tables should be cached. By default, large tables will fill the

buffer cache (unless assigned to the keep or recycle buffer

pool).

V$CACHE shows what objects are currently in the buffer

cache. CATPARR.SQL is run to create this view. While

CATPARR.SQL is for Parallel Server environments,

V$CACHE is useful in single instance environments as well.

6. TUNING THE REDO LOG BUFFER

 The LOG_BUFFER initialization parameter specifies how big

(in bytes) the redo log buffer is. V$SYSTEM_EVENT is queried

to determine if there are waits for 'log buffer space'. If so, the

redo log buffer size should be increased. This information can

also be obtained from V$SYSSTAT by looking at the number

of 'redo buffer allocation retries' there are for a given user

process.

7. DATABASE CONFIGURATION

The LOG_CHECKPOINTS_TO_ALERT initialization

parameter has to be set to TRUE so that checkpoint beginning

and ending times are logged to the alert.log file.

The DB_BLOCK_CHECKPOINT_BATCH specifies the

maximum number of blocks that a DBWR process can write in

a single batch during a checkpoint. Increasing this value can

speed up checkpoint times, but making it too large can give

poor response times as well.

The initialization parameters DISK_ASYNCH_IO and

TAPE_ASYNCH_IO specify whether the operating system

supports asynchronous I/O for hard drives and tape drives

respectively (most do). The default value is TRUE.

The SYSTEM tablespace should only contain data dictionary

objects, PL/SQL packages, triggers and the initial rollback

segment. The database should have a minimum of six

tablespaces. Heavy I/O on the SYSTEM tablespace should be

avoided. (Powell, 2004)

8. USING ORACLE BLOCKS EFFICIENTLY

PCTUSED is relevant for deletes. If there are a lot of

inserts and deletes on a table, PCTUSED has to be set high. On

DSS systems PCTUSED is irrelevant. PCTFREE and

PCTUSED taken together should be less than 100.

The highwater mark for a table is increased 5 blocks at a time.

Full table scans read up through the highwater mark. DELETE

does not reduce the highwater mark count on a table , but

TRUNCATE does. So does ALTER TABLE tablename

DEALLOCATE UNUSED.(Stuns et al., 2005)

9. OPTIMIZING SORT OPERATIONS

The following clauses cause sorting to occur: ORDER BY,

GROUP BY, DISTINCT, UNION, INTERSECT and MINUS.

Oracle will sort in memory if the sort can fit in the value

specified by the initialization parameter SORT_AREA_SIZE

(in bytes). If not, Oracle will break the sort into multiple sort

runs. MAXEXTENTS is not a valid storage parameter for

temporary tablespaces.

The initialization parameters SORT_WRITE_BUFFERS and

SORT_WRITE_ BUFFER_SIZE specify how much memory to

allocate for direct write sorts. The SORT_WRITE_BUFFERS

should be between 2 and 8. SORT_WRITE_ BUFFER_ SIZE

should be between 32K and 64K.

10. CONCLUSIONS

The paper presents in few details most of the necesary steps

that need to be taken to assure that an oracle DBMS performs

optimal. The future work will include a more detailed approach

on each step of the optimization process. The Database used

will be an oracle version 10g. It will run on a virtual machine

with limited resources. Time and resource consuming tasks will

be chosen and run before and after the tunning of the database

parameters. Performance evaluation will be run before and after

the alterations of the database and the results will be compared

to measure the improovements.

11. REFERENCES

Stuns D.; Buterbaugh T.&Bryla B.(2005), Oracle 10g™

Administration II ISBN: 0-7821-4368-7, San Francisco

Powell G. (2004), Oracle High Performance Tuning for 9i and

10g, Digital Press

Kilpatrick P., Raman S.& Womack J., Oracle 9i Performance

Tuning, Student Guide, Volume 1, July 2001, Oracle

Corporation.

Troy technologies USA, Oracle 8: Performance Tuning (2001).

Available from http://www.troytec.com Accessed on: 2009-

10-05

Mark Gurry (2002). Oracle SQL Tuning Pocket Refference,

O’Reilly, ISBN : 0-596-00268-8

http://www.troytec.com/

