

Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, Volume 21, No. 1, ISSN 1726-9679

ISBN 978-3-901509-73-5, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria, EU, 2010

Make Harmony Between Technology and Nature, and Your Mind will Fly Free as a Bird

Annals of DAAAM International

USING MYSQL QUERY CACHE TO SPEED UP QUERY PERFORMANCE

BOICEA, A[lexandru]; PETCU, R[obert]; RADULESCU, F[lorin] & TRIFAN, I[onut]

Abstract: This paper presents how to use query cache from

MYSQL to improve your database response from a query. This

query cache caches the results of SELECT queries and the most

frequently used database queries will run much faster, because

the data results will be read from the cache instead of having to

run the query again. The testing was made on an database

backup dumps from Wikimedia through execution of stored

procedure PL/SQL which is processing the fields table from

this database.

Keywords: database, query, cache, mysql, stored procedure

1. INTRODUCTION

As we know, speed is always the most important element in

developing aplications, especially for those aplications with

high traffic database (http://www.techiecorner.com). MySQL

Query Cache is a powerful feature which when it is used

correctly can give big performance gains on MySQL instance

(http://www.dbtuna.com).

The query cache stores the text of a SQL query statement

(or stored procedure) together with the corresponding results

that was sent to the client. If an identical statement is received

later, the server retrieves the results from the query cache rather

than parsing and executing the statement again. A result set

generated by one client can be sent to the same query issued by

another client because the query cache is shared among

sessions (http://dev.mysql.com/doc/refman/5.1 /en/query-

cache.html).

The query cache can be very useful in an environment

where you have tables that do not change very often and for

which the server receives many identical queries

(http://www.mysql performanceblog. com). To show if the

query cache is enabled and what parameters are set we can use

the next SQL statement:

Fig. 1. SQL statement

An example result for the above query is below, which

shows that the query cache engine is available, but the query

cache size is set to zero and therefore nothing will be cached,

and the query cache engine will not actually be used.

Fig. 2. Query cache variables and their values

2. MYSQL QUERY CACHE CONFIGURATION

First we need to have MySQL 4.0.1 or higher to use query

cache and then to see if query cache is enabled

(http://www.petefreitag.com). We can do this by selecting the

have_query_cache variable from VARIABLES. Several other

system variables control query cache operation, variables that

can be set in an option file (my.ini from mysql directory) or on

the command line when starting mysqld

(http://www.databasejournal. com).

To set the size of the query cache first set the

query_cache_size system variable. If we set this variable to

zero the query cache will be disabled. When the

query_cache_size is a nonzero value, you have to keep in mind

that the query cache needs a minimum size of 40KB to allocate

its structures (http://ronaldbradford.com/ blog).

 The sql statement to set the size of the query cache is:

Fig. 3. Set query_cache_size

The query_cache_size value is aligned to the nearest 1024

byte block so the value reported may be different from the

value that we assign. After we set this variable the

query_cache_type variable influences the way query cache

works. This variable can be set to the following values:

 a value of 0 or OFF prevents caching or retrieval of the

cached results;

 a value of 1 or ON allows caching except of those

statements that begin with SELECT SQL_NO_CACHE;

 a value of 2 or DEMAND causes caching for only those

statements that begin with SELECT SQL_CACHE

(http://www.cyberciti.biz).

Setting the GLOBAL query_cache_type value determines

query cache behavior for all clients that connect after the

change is made. Individual clients can control cache behavior

for their own connection by setting the SESSION

query_cache_type value. For example, a client can disable use

of the query cache for its own queries like this:

Fig. 4. Set query_cache_type

We can also manipulate query cache with the following

MySQL statements:

 RESET QUERY CACHE – remove all the queries

from query cache;

 FLUSH QUERY CACHE – defragment the query

cache memory

3. TEST PROCEDURE

For testing we used some dump tables downloaded from

Wikimedia (http://dumps.wikimedia.org/backup-index.html).

The database name used is cache_test were we have imported

the following tables: imagelinks with 31.546 rows, langlinks

with 228.864 rows, pagelinks with 5.887 rows,

page_restrictions with 14 rows and template_links with

537.887 rows.

To select data from this tables we have build some stored

procedures. The first procedure is called select_data() and has

four parameters: table_db1, column_db1, table_db2 and

column_db2. This procedure selects the columns of the tables

introduced as parameters.

Procedure simple_select() has no parameters and it selects

columns pl_from, pl_namespace, pl_title from pagelinks table,

columns tl_from, tl_namespace, tl_title from templatelinks

where the column pl_from and tl_from are equal. Procedure

call_all() calls the above procedures with predefined

parameters. Last procedure (select_two()) will select data from

the largest database tables (langlinks and templatelinks).

4. TEST RESULTS

The results from our test are splited in two parts: tests done

with query cache disabled and tests done with query cache

enabled.

To achieve the table below each procedure was called by

five consecutive times to make a good estimation for the

response time (response time is measured in seconds).

Procedure t1 t2 t3 t4 t5

select_data 1.516 1.594 2.203 1.547 1.453

simple_select 3.094 3.218 3.000 3.093 3.344

call_all 4.891 4.953 4.547 4.609 4.812

select_two 82 79 78 79 80

Tab. 1. Test results with query cache disabled

Procedure t1 t2 t3 t4 t5

select_data 1.500 1.359 1.344 1.328 1.343

simple_select 3.125 3.078 3.032 3.022 3.110

call_all 4.563 4.329 4.485 4.390 4.312

select_two 85 80 78 80 78

Tab. 2. Test results with query cache enabled

To highlight differences between the time response of the

procedures with query cache disabled and query cache enabled

we got the values from above tables, we calculated the average

of given values for three of the four procedures and then we

have built the chart in Figure 5.

Fig. 5. Response time chart

Because the big diference between time responses from the

first three procedures and the select_two() procedure we

decided to make an other chart (Figure 6). In this chart we will

have all the values from the tables with query cache disabled

and the table with query cache enabled.

Fig. 6. Response time for select_two()

5. CONCLUSIONS

Analyzing the results of testing it can be easily observed the

difference between the response time when we have query

cache disabled and when it is enabled.

The results set must be equal or smaller than the

query_cache_limit and we can’t use MySQL version 5.0

because querys running from stored procedures, functions or

triggers are not cached (http://rackerhacker.com).

Thus, the procedures that make selects from tables with ten

thousands of records has differences of tens microseconds when

using query cache, the procedures which make select from

tables with hundred of thousands records differences between

using query cache disabled and query cache enabled is of

seconds. This fact draws us to the conclusion that we can obtain

higher performance in MySql applications if we use the query

cache enabled and we have set the query_cache_size variable to

a value greather than 40KB.

Also, query cache can be useless if it is used in an

application were we have a lot of inserts or updates on the

tables of database but, when a table is modified(insert, updates,

etc.) the cache automatically expires. Other reasons which will

make queries un-cacheable are:

 use of functions, such as CURRENT_DATE, RAND

and user defined functions;

 queries that uses bind variables.

6. REFERENCES

Freitag, P. (2005); The MySQL Query Cache, Available from:

http://www.petefreitag.com, Accessed on: 2010-05-14

Hacker, R. (2007); MySQL's query cache explained, Available

from: http://rackerhacker.com, Accessed on: 2010-05-14

Bradford, R. (2009); Using the Query Cache effectively,

Available from: http://ronaldbradford.com/blog, Accessed

on: 2010-05-26

*** (2009) http://www.dbtuna.com, MySQL Query Cache

Performance, Accessed on: 2010-05-26

*** (2007) http://www.cyberciti.biz, Enable the query cache in

MySQL to improve performance, Accessed on: 2010-05-13

*** (2006) http://www.mysqlperformanceblog.com, MySQL

Performance Blog, Accessed on: 2010-05-01

*** (2006) http://dev.mysql.com/doc/refman/5.1/en/query-

cache.html, The MySQL Query Cache, Accessed on: 2010-

05-01

*** (2006) http://www.techiecorner.com, Turn on MySQL

query cache to speed up query performance?, Accessed on:

2010-05-03

*** (2003) http://www.databasejournal.com, MySQL's Query

Cache, Accessed on: 2010-05-03

