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Abstract: Cybenko and Van Loan (Cybenko & Van Loan, 1986) 

presented an algorithm which is a combination of bisection and 

Newton’s method for the secular equation. This approach was 

improved considerably in (Mackens & Voss 1997) and (Kostic 

& Voss, 2002) by replacing Newton’s method by a more 

appropriate root finding methods for the secular equation. In 

this note we present new secular function of real symmetric, 

positive definite Toeplitz matrix (RSPDT) Tn and theoretically 

construct its rational approximation.  
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1. INTRODUCTION  

 

The problem of finding the smallest eigenvalue 1
(n) of a 

real symmetric, positive definite Toeplitz matrix (RSPDT) Tn is 

of considerable interest in signal processing. Given the 

covariance sequence of the observed data, Pisarenko 

(Pisarenko, 1973) suggested a method which determines the 

sinusoidal frequencies from the eigenvector of the covariance 

matrix associated with its minimum eigenvalue. The 

computation of the minimum eigenvalue of Tn was studied in, e. 

g. (Cybenko & Van Loan, 1986; Kostic, 2004; Kostic & 

Cohodar, 2008 Mackens & Voss, 1997, 1998, 2000; Melman, 

2006 Mastronardi, N & Boley, D.1999). Cybenko and Van 

Loan (Cybenko & Van Loan, 1986) presented an algorithm 

which is a combination of bisection and Newton’s method for 

the secular equation. This approach was improved considerably 

in (Mackens & Voss 1997) and (Kostic & Voss, 2002) by 

replacing Newton’s method by a more appropriate root finding 

methods for the secular equation. Taking advantage of the fact 

that the spectrum of a symmetric Toeplitz matrix can be divided 

into odd and even parts the methods based on the secular 

equation were accelerated in (Voss, 1999). 

The paper is organized as follows.  In Section 2 we present the 

basic properties of Toeplitz matrices and the notation we will 

use. In Section 3 we present the new method which is based on 

new secular equation and its approximation. In Section 4 we 

present conclusion and further research. 

 

2. PRELIMINARIES 
 

The (i,j)th element of an n x n  symmetric Toeplitz matrix  Tn is 

given by 
i j

t


 for some vector  1 11
T n

n,t , ,t R .   The matrix 

Tn  satisfies JTnJ= Tn  and is therefore centrosymmetric. We use 

I for the identity matrix and J for the exchange, or “flip” matrix 

with ones on its southwest-northeast diagonal and zeros 

everywhere else. For simplicity’s sake, our notation will not 

explicitly indicate the dimensions of the matrices I and J. 

   We note that for any R, the matrix (Tn-I) is symmetric 

and centrossymmetric, whenever Tn is. In what follows, an 

important role is played by the so-called Yule-Walker 

equations. For an n x n  symmetric Toeplitz matrix Tn, defined 

by  1 11 n,t , ,t ,  this system of linear equations is given by 

Tny
(n)=-t(n) where t(n)=(t1,…,tn)

T. There exist several methods to 

solve these equations. Durbin’s algorithm solves them by 

recursively computing the solutions to lower-dimensional 

systems, provided all principal sub matrices are non-singular. 

This algorithm requires 2n2+O(n) flops. 
 

3. NEW METHOD 
 

In this section we discuss the new method.  

Let  
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be RSPDT matrix. We denote by ),( jj

j RT  its j-th principal 

sub matrix, and we assume that its diagonal is normalized by

10 t . If 
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 are the eigenvalues of 
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then the interlacing property 
    ,2,1

1

)(

1 nkjk

j

k

j

k

j  

   holds. 

In the determinant   is defined the characteristic polynomial 
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By matrix multiplication it is easy to get  
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From last equation and   
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we get 
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For above proposed calculation we spent 6(n-3) flops. 

In equation (2) by using block elimination matrix B is 

eliminated. This way we get  
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where 
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We get following recursion 

 

                                    
 

and we define new secular equation: 

 

                        

 

From modular decomposition of matrix         we 

get 
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and its rational approximation 
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where a,b,c,d and e are determined such that: 

 

        
 
                   

         
 
                  

 

   
 

 

        
 
                   

                            
 

      
 

 

     
                         

   

   
 

 

     
                         

   

      

 

 

        
 
                         

 
                  

 

                             
 
 

 

          

 

 

        
 
                         

 
                  

 

                                                      
 

                                             
        

 
         

            
 

 

By making first derivation of odd equations respectively, we 

get even equations.  

 

4. CONCLUSION 
 

We have presented new secular equation of RSPDT matrix Tn 

and theoretically constructed its rational approximation. Our 

goal is to improve already existing algorithms which are based 

on secular equation (Mackens & Voss 1997) and (Kostic & 

Voss, 2002). With new algorithm we try to overcome the 

situation when minimal eigenvalues of matrix Tn and Tn-1 are 

too close to each other. In this note, suggested approximation is 

convenient because coefficients a, b, c, d and e are easily 

computed and their computing does not require large number of 

flops. Through numerical experiments, which will be goal of 

future research, we will compare behaviour of new and old 

secular equation, as well as their rational approximations. By 

doing so, we will consider algorithm which has smaller number 

of flops and which is numerically more stable, to be the better 

one. In further research it is necessary to practically confirm 

suggested algorithm, compare it with previous algorithm and 

use symmetry properties of eigenvector.  
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